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Introduction
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Motivation

❑ A = 
3 −2
1 0

u = 
−1
1

⇒ Au = 
3 −2
1 0

−1
1

= 
−5
−1

v = 
0
2

⇒ Av = 
3 −2
1 0

0
2

= 
−4
0

w = 
2
1

⇒ Aw = 
3 −2
1 0

2
1

= 
4
2

❑ Vector “w” keeps the straight, but changes the scale.
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Definition

Definition

An eigenvector of a square 𝑛 × 𝑛 matrix 𝐴 is nonzero vector 𝑣 such that 𝐴𝑣 = 𝜆𝑣
for some scalar 𝜆. A scalar 𝜆 is called an eigenvalue of 𝐴 if there is a nontrivial 
solution 𝑣 of 𝐴𝑣 = 𝜆𝑣; such an 𝑣 is called an eigenvector corresponding to 𝜆.

Example

❑ 𝐴 = 
3 −2
1 0

, 𝑣 = 
2
1

, 𝜆 = 2

❑ Show that 7 is an eigenvalue of matrix B, and find the corresponding eigenvectors.

B =
1 6
5 2
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❑ An eigenvector must be nonzero, by definition, but an eigenvalue may be zero.



Eigenspace

Note

𝜆 is an eigenvalue of an 𝑛 × 𝑛 matrix:
𝐴𝑣 = 𝜆𝑣 ⇒ 𝐴 − 𝜆𝐼 𝑣 = 0

The set of all solutions of above is just the null space of the matrix 𝐴 − 𝜆𝐼. So this set 
is the subspace of ℝ𝑛and is called the eigenspace of A corresponding to 𝜆 . The 
eigenspace consists of the zero vector and all the eigenvectors corresponding to 𝜆.

Eigenspace: A vector space formed by eigenvectors corresponding to the same 
eigenvalue and the origin point. 𝒔𝒑𝒂𝒏{𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒆𝒊𝒈𝒆𝒏𝒗𝒆𝒄𝒕𝒐𝒓𝒔}
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Definitions

Note

❑𝐴𝑣 = 𝜆𝑣 ⇒ 𝐴𝑣 − 𝜆𝑣𝐼 = 0 ⇒ 𝑨 − 𝝀𝑰 𝒗 = 𝟎 𝒗 ≠ 𝟎
o 𝒗 ∈ 𝑵 𝑨 − 𝝀𝑰
o 𝑨 − 𝝀𝑰 must be singular.
o Proof that for finding the eigenvalue we should solve the determinate zero equation. Look at nullspace, 

rank and nullity theorem, singular matrix, and det zero!

❑Characteristic polynomial 𝐝𝐞𝐭(𝑨 − 𝝀𝐈)

❑Characteristic equation 𝐝𝐞𝐭(𝑨 − 𝝀𝐈) = 0
❑If λ is an eigenvalue of A, then the subspace 𝐸λ= {span{v} | Av = λv} is 

called the eigenspace of A associated with λ. (This subspace contains all 
the span of eigenvectors with eigenvalue λ, and also the zero vector.)

❑Eigenvector is basis for eigenspace.
❑Set of all eigenvalues of matrix is 𝜎 𝐴 𝑛𝑎𝑚𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑜𝑓 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥
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Definitions

Note

❑Instead of det(𝐴 − 𝜆𝐼), we will compute 𝐝𝐞𝐭 𝝀𝐈 − 𝑨 . Why?
o det 𝐴 − 𝜆𝐼 = −1 ndet(𝜆𝐼 − A)
o Matrix 𝑛 × 𝑛 with real values has …… eigenvalues.
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Finding Eigenvalues and Eigenvectors
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Example

Find eigenvalues and eigenvectors, eigenspace (E), and 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 of matrix 𝑨 =
𝟑 −𝟐
𝟏 𝟎

:

det(𝐴 − 𝜆I) =
3 − 𝜆 −2
1 −𝜆

= 𝜆2- 3𝜆 + 2 = 0 ⇒ ቊ
𝜆1 = 1
𝜆2 = 2

ൠ
𝜆1 = 1

𝐴 − 𝜆1𝐼 𝑞1 = 0
⇒ 𝑞1 =

1
1

⇒
3 −2
1 0

1
1

= 1
1
1

ൠ
𝜆2 = 2

𝐴 − 𝜆2𝐼 𝑞2 = 0
⇒ 𝑞2 =

2
1

⇒
3 −2
1 0

2
1

= 2
2
1

Eigenvalues={1,2}

Eigenvectors={
1
1
,
2
1
}

𝐸1 𝐴 = 𝑠𝑝𝑎𝑛{
1
1
} 𝐸2 𝐴 = 𝑠𝑝𝑎𝑛{

2
1
}

𝜎 𝐴 ={1,2}

𝑨𝑸 = 𝑸𝜦 ⇒
𝟑 −𝟐
𝟏 𝟎

𝟏 𝟐
𝟏 𝟏

= 
𝟏 𝟐
𝟏 𝟏

𝟏 𝟎
𝟎 𝟐

Example
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Eigenvalues
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❑ The n roots of this polynomial are eigenvalues!
o 𝒇 𝝀 = 𝝀 − 𝝀𝟏 𝝀 − 𝝀𝟐 …(𝝀 − 𝝀𝒏)

❑ What is 𝑐𝑛−1?
o 𝑐𝑛−1 = −𝑡𝑟𝑎𝑐𝑒(𝐴)

❑ What is 𝑐0?
o 𝑐0 = −det(𝐴)

Expanding the Characteristic equation of A to polynomial form

Theorem

To have (1) scalar for largest degree instead of |𝑨 − 𝝀𝐈|, consider |𝝀𝐈 − 𝑨|

𝒇 𝝀 = Proof?
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Other view: 𝑓 𝜆 = (𝜆- 𝜆1)(𝜆-𝜆2)… (𝜆- 𝜆𝑛)

Sum and Product of eigenvalues

Theorem

If A is an n × n matrix, then the sum of the n eigenvalues of A is the trace of A.
(coefficient 𝑐𝑛−1 in  expanded characteristic equation)

Theorem

If A is an n × n matrix, then the product of the n eigenvalues is the determinant of A. 
(coefficient 𝑐0 in  expanded characteristic equation)

Proof?

Proof?
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Determinant and Eigenvalue

Theorem

0 ∈𝜎(𝐴)  ⇔|𝐴|=0

Proof?
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Let 𝐴 be an 𝑛 × 𝑛 matrix. Then 𝐴 is invertible if and only if:
❑The number 0 is not an eigenvalue of 𝐴 .
❑The determinant of 𝐴 is not zero.

Conclusion: The Invertible Matrix Theorem



An Important Theorem!

Theorem

The eigenvalues of a triangular (upper/lower/diagonal) matrix are the entries on its main 
diagonal. The eigenvectors are 𝑒𝑖s.

Proof?
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❑ Projection matrix
o 0 , 1

o If rank(P)=r with n columns, what are the repetition of the eigenvalues?
• 0: n-r   1:r

❑ Reflection matrix
o 1 , -1

❑ Permutation matrix
o 1 , -1

Real Eigenvalues of different matrices
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Characteristic Equation

Example

Find the eigenvalues with their repetition and eigenvectors:

❑ 𝐴 =
1 0 0
0 0 0
0 0 1

❑ The characteristic polynomial of a 6 × 6 matrix is 𝜆6- 4𝜆5- 12𝜆4.

❑ 𝐵 =
3 −2
1 0

❑ 𝐶 =
2 1
−1 0

❑ 𝐷 =
−2 1
−2 0
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Proof?

Eigenvalues of matrix products

Theorem

The nonzero Eigenvalues of AB equal to the nonzero eigenvalues of BA.
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Why Diagonalization?
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❑ Theorem “The eigenvalues of a triangular (upper/lower/diagonal) 
matrix are the entries on its main diagonal.“ can leads to if we 
have matrix A and B that 𝐷 = 𝐵−1𝐴𝐵 be a diagonal matrix:

det 𝜆𝐼 − 𝐴 = det 𝜆𝐼 − 𝐵−1𝐴𝐵

Conclusion from pervious theorems

Proof?
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Similarity and Diagonalizable

Definition

A matrix 𝐴 is said to be diagonalizable if 𝐴 is similar to a diagonal matrix 𝐷: D = 𝑄−1𝐴𝑄,
that is, if 𝐴 = 𝑄𝐷𝑄−1 for some invertible matrix Q and some diagonal matrix 𝐷.

Definition
Two n-by-n matrices A and B are called similar if there exists an invertible n-by-n matrix 𝑸

such that

𝐴 = 𝑄−1𝐵𝑄
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Similarity
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Relation between similar matrix and change of basis!

Note

❑ A square matrix for a linear transform 

𝐴: 𝑛 × 𝑛 𝑇: 𝑅𝑛 → 𝑅𝑛 ⇒ 𝑨𝒂 = 𝒃 𝑎, 𝑏 ∈ 𝑅𝑛

❑ Linear transform in new basis ҧ𝐴 = 𝑃−1𝐴𝑃

❑ ҧ𝐴 is the standard matrix of linear transform in new basis.

❑ Similarity Transformation

ҧ𝐴

ൠ
𝑎 = 𝑃ത𝑎
b =𝑃ത𝑏

⇒ A𝑃ത𝑎 = 𝑃ത𝑏 ⇒ 𝑃−1𝐴𝑃 ത𝑎 = ത𝑏 ⇒ ҧ𝐴ത𝑎 = ത𝑏
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❑

❑ A matrix is a similarity invariant, meaning it remains unchanged 
under a similarity transformation.

❑ Why trace is a similarity invariant?

❑ Why rank is a similarity invariant?

Think!

Warnings

1. The matrices 
2 1
0 2

and 
2 0
0 2

are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (If 𝐴 is row equivalent to 𝐵, then 𝐵 = 𝐸𝐴 for some 
invertible matrix 𝐸.) Row operations on a matrix usually change its eigenvalues.
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Facts

❑ Similar matrices have:

o same determinant 

o equal characteristic equations

o same trace

o same rank

o inverse of A and B are similar (if exists) 

Theorem

Proof?
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Find matrix Q in similarity formula

Find the similarity matrix of A

𝐴 =
0 −1
1 0

Solution:

𝑩 =
𝟏 𝟏
−𝒊 𝒊

Example
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Note

Two n-by-n matrices A and B are called similar if there exists an invertible n-by-n matrix 𝑸 such 

that 𝐴 = 𝑄−1𝐵𝑄. One solution for Q is the matrix whose columns are the eigenvectors of 𝐵.



Diagonalization
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Diagonalizable

Definition

A matrix 𝐴 is said to be diagonalizable if 𝐴 is similar to a diagonal matrix, that is, if 𝐴 = 𝑄𝐷𝑄−1

for some invertible matrix 𝑄 and some diagonal matrix 𝐷.

Theorem

An 𝑛 × 𝑛 matrix 𝐴 is diagonalizable if and only if 𝐴 has 𝑛 linearly independent eigenvectors. 

❑ The columns of 𝑄 is called an eigenvector basis of ℝ𝑛.

Corollary

❑ An 𝑛 × 𝑛 matrix with 𝑛 distinct eigenvalues is diagonalizable.
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Diagonalisable and Non-Diagonalisable Matrices 

❑ Distinct eigenvalues -> eigenvectors are Linear Independent

❑ Duplicate eigenvalues -> 

❑ Not all matrices are diagonalizable. 
o Example:

𝐴 =
0 1
0 0

❑ The diagonalizing matrix S is not unique.
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Diagonalisable and Non-Diagonalisable Matrices 

❑ For matrix

o Its eigenvalues are −2, −2 and −3 (repeated eigenvalues)
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Diagonal Matrix

S is not invertible!



Diagonalisable and Non-Diagonalisable Matrices 

❑ For matrix

o Its eigenvalues are −2, −2 and −3 (repeated eigenvalues)
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Diagonal Matrix

R is invertible!

𝐵𝑅 = 𝑅𝐷
So what's going on here? 



Diagonalisable and Non-Diagonalisable Matrices 
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❑ Details for matrix A:



Diagonalisable and Non-Diagonalisable Matrices 
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❑ Details for matrix B:



Diagonalisable and Non-Diagonalisable Matrices 
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❑ Details for matrix B:



Diagonalisable and Non-Diagonalisable Matrices 
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❑ General considerations 
1. In general, any n by n matrix whose eigenvalues are distinct 
can be diagonalised. 
2. If there is a repeated eigenvalue, whether or not the matrix 
can be diagonalised depends on the eigenvectors. 

(i) If there k<n eigenvectors (up to multiplication by a constant), then the 
matrix cannot be diagonalised. 

(ii) If the unique eigenvalue corresponds to an eigenvector e, but the repeated 
eigenvalue corresponds to an entire plane, then the matrix can be 
diagonalised, using e together with any two vectors that lie in the plane. 

3. If all n eigenvalues are repeated, then things are much more 
straightforward: the matrix can't be diagonalised unless it's 
already diagonal. 



Power of matrix

Find 𝑨𝒏?

Example
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Conclusion

Another Notation

❑With similarity transformation Q, matrix A changed to a diagonal matrix 𝑑𝑖𝑎𝑔(𝜆1,,𝜆2)

❑Matrix 𝐴 has n linear independent eigenvectors

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 37

❑ 𝐴𝑞1 = 𝜆1𝑞1 = [𝑞1 𝑞2 ⋯ 𝑞𝑛]

𝜆1
0
⋮
0

⋯ 𝐴𝑞𝑛 = 𝜆𝑛𝑞𝑛= [𝑞1 𝑞2 ⋯ 𝑞𝑛] 

0
0
⋮
𝜆𝑛

❑ [𝐴𝑞1 𝐴𝑞2 ⋯ 𝐴𝑞𝑛] = [𝑞1 𝑞2 ⋯ 𝑞𝑛]

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛

❑ A [𝑞1 𝑞2 ⋯ 𝑞𝑛] = 𝑄Λ ⟹ 𝐴𝑄 = 𝑄Λ

❑ Λ = 𝑄−1𝐴𝑄𝑇

❑ 𝐴 = 𝑄Λ𝑄−1

𝑄
Λ
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